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Infrared Study of Carbon Dioxide Adsorption on Lanthanum
Sesquioxide and Trihydroxide

Although investigations of the catalytic
properties of rare earth sesquioxides have
multiplied in recent years (I-3), the pri-
mary modes of surface Interactions on
these materials remain largely undefined.
Details of adsorption - desorption processes,
for example, and of the natures of adsorbed
species on LnyOj surfaces are sparse (6). As
part of a continuing study of the fundamen-
tal catalytic and surface properties of basic
lanthanide oxides, we have applied infrared
and quantitative gravimetrie techniques to
to investigate the surface interactions of
LasOs and La(OH); with carbon dioxide,
and report pertinent results in the present
communication.

La(OH)s and LayO; were prepared using
the  “dehydration/rehydration” method
described previously (7). Isothermal de-
composition of the trihydroxide to the type
A (hexagonal) sesquioxide occurs in two
stages (passing through an oxyhyvdroxide,
LaOOH, intermediate), and is complete
within 10-12 hr at 300°C. No spectral
evidence of either bulk or surface hydroxyls
in the oxide remained above the latter
temperature. BET-N, surface areas of
La,0; and La(OH); following 16 hr evac-
uations at 800 and 100°C, respectively, were
7.5 and 18.5 m2’g. Samples for infrared
studies were fabricated from pressed dises
of the hydroxide and had an optical dens-
ity of 10 mg/em? (dehydrated weight).
Spectral resolution at <2000 em™! was bet-
ter than 1.5 em™ in all cases. Deseriptions
of the infrared cell and electrobalance ad-
sorption apparatus have been provided
previously (7).
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“xposure of freshly caleined La.Os to 50
Torr of dry CO» at 25°C caused the imme-
diate appearance of infrared bands at 850
and 1060 em~! and a doublet with absorb-
ance maxima at 1390 and 1500 em™! (Fig.
1) which attained 909, of their final inten-
sities within 5 min. We ascribe these bands
to the deformation, symmetric stretching,
and antisymmetrie stretehing modes, re-
spectively, of a unidentate carbonate species
(8), formed by interaction of CO; molecules
with basie oxide 1ons at the surface:
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The relative hreadth of the 1390-1500 em=!
pair reflects the extent of heterogeneity of
the surface O~ ions. Quantitative adsorp-
tion measurements indicated that the level
of surface coverage under these conditions
was 7 to 8 CO, molecules/100 A% For a
typical (111) face of hexagonal La,0s, with
a =394 A and ¢ = 6.13 A (9), this value
corresponds to approximately 1 ('O, mole-
cule ‘surface 0>~ ion. As expected, no evi-
dence  was  observed for hicarbonate
(HCO;7) species, due to the lack of surface
hydroxyl groups on caleined LasOj and
the absence of bands in the region 1600-
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1800 ¢m™'  indicated that carboxylate
(CO4™) formation also does not occur in
this system.

The observed COy—La,O; spectrum is in
close agreement with that obtained by
Filippova et al. (10) for CO, adsorption on
type A Nd.0s, and, apart from the ahsence
of O—H stretching bands due to crystalline
water of hydration, is quite similar to the
spectrum reported by Caro and co-workers
(11) for bulk La,(CO3)3-8SH,0. The latter
authors observed, in the region above 800
em™!, “non-OH” bands for this compound
at 1460, 1360, 1075, and 850 em™ for vs, v,
ve, and w, respectively, and attributed
these to a unidentate coordinated CO;
group. Rehydration with gaseous ;0 at
25°C of Las0; contatining a carbonate sur-
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face layer oceurred much more slowly (> 72
hr for complete rehydration) than that of o
“elean” LasOQy sample (2-3 hr). The rela-
tively high concentration of surface 'Oy~
structures evidently inhibits entry of ILO
molecules between the O* and (La0Q),**
layers of the oxide, as normally occurs dur-
ing the rehydration process (12). Intensities
of the four CO,2~ infrared bands did not de-
crease, however, cven after quantitatively
complete rehydration (discounting the un-
available surface layer of O~ ions), indicat-
ing that the observed spectrum is that of «
true surface carbonate species and is not
due to bulk Las(COj3); formation.
Evacuation for 6 hr at each of several
temperatures up to 250°C (Fig. 1) caused
a narrowing of the 1390-1500 ¢m~! douh-
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Fia. 1. Infrared spectra of CO, adsorbed on La,0s; LasO; sample, calcined 16 hr in vacuo at
800°C [ (—-) background spectrum ], exposed to 60 Torr of dry CO; at 25°C for 1 hr, and then
evacuated for 6 hr at each of the indicated temperatures (°C).
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Fia. 2. Infrared spectra of CO» adsorbed on La(OH); La(OH); sample, caleined 16 hr in rvacuo
al 100°C [ (= -) background spectrum 7, exposed 1o 30 Torr of dry CO5 at 25°C for 1 hr, and then
evacuated for 6 br at each of the indicated temperatures (°C).

let and consequent shift of the apparent
1500 em~! band toward its true (lower) fre-
quency, as well as a gradual decrease in
intensity of all four COz*~ bands as CO.
desorbed. Following evacuation at 275°C,
weak bands appeared at 1310 and 1565
em™ which are due to bidentate carhonate
entities (8) generated by rearrangement of
unidentate structures as their surface

population decreased :
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The surface coverage under these condi-
tions was 1 to 2 CO, molecules/100 AZ.
Formation of such bidentate structures sug-
gests the existence and accessibility of ap-
propriate anion vacancies on the oxide sur-
face. Spectral evidence for unidentate
CO3*~ species disappeared at 300°C and
was followed by complete removal of the
bidentate struetures at >350°C.

COy + La(OH),

Lanthanum trihydroxide contains at
least two structurally dissimilar types of
bulk hydroxide ions. The more weakly
bound of these gives a relatively sharp in-
frared band at 3610 em—! and is preferenti-
ally removed during the first stage of
La(OH); dehydration (LaOOH formation)
at 200°C (7). The other, hydrogen-bound,
type is represented by a much broader in-
frared band with an absorbance maximum
at 3590 em~! and is removed during LaOOH
decomposition to the oxide at 300°C. In-
teraction of La(OH); with CO, at 25°C
causes proton displacement from and sim-
ultaneous condensation of surface OH~
ions of the second type, as shown by a
marked decrease in intensity of the 3590
em™! band of La(OH); following CO. ad-
sorption (7):
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Molecular water formed during this process
remains physically adsorbed on the surface,
as evidenced by a band that appears at
1630 ecm™! (Fig. 2), and is largely removed
by brief evacuation at 25°C. The uniden-
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tate COZT species that result from reaction
(3} are evidently identical to those ob-
tained on LaxOy and give rise to the same
four bands (850, 1060, 1390, and 1500 em™")
observed in IFig. 1. However, the extent of
surface coverage (7 to 8 CO, molecules/100
fi‘-’) was virtually the same as that on the
sesquioxide, the larger relative intensities
of the bands in Fig. 2 compared to those in
Fig. 1 being due to the higher surface area
of the hydroxide.

Unlike the behavior of the COy-Las0;
system, however, evacuation at successively
increasing temperatures, although accom-
panied by a narrowing of the 1390-1500
em~! doublet, caused a marked increase in
the intensities of all four CO4 bands at
150-200°C. Little further change occurred
until >500°C, when all bands began to
decrease, and evacuation at >700°C was
required to remove all evidence of the
carbonate species. The two stage of bulk hy-
droxide dehydration to the oxide, however,
and consequent disappearance of OH~
bands at 3610 and 3590 ¢m™1, still occurred
at 200 and 300°C, respectively, and ap-
peared to be virtually unaffected by the
presence of the surface COz~ layer. No
evidence was observed in any of the spectra
for the formation of bidentate carbonate
species. At the high tempcratures (600
700°C) required in this case to reduce the
surface concentration of unidentate COz*~
to a sufficiently low level, the energetics of
formation of the bidentate structures are
evidently no longer favorable.

The apparently much greater stability of
carbonate entities that result from CO; ad-
sorption on La(OH); compared to those
formed on Lay0, implies a structural dis-
similarity between the predominant surface
species obtained in the two systems, and,
moreover, one that persists during and after
complete dehydration of the hydroxide.
Rather than forming a simple unidentate
CO4>~ species, as occurs on La:0Os, inter-
action of CO, with La(OH); may, for ex-
ample, generate a surface layer of lanth-
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anum hydroxycarbonate, similar to the bulk
compound obtained by decomposition of

mo(

La(OH)y + CO, 2
(LaOH)COs + H:0.  (4)

CO3* entities in the lamellar hydroxycar-
honate sutructure are bridge-bonded be-
tween adjacent (LaOH) layers. Subsequent
thermal treatment at 150-200°C effects a
decomposition of (LaOH)COj; that accom-
panies the first stage of La(OH); dehydra-
tion and forms the corresponding oxycar-
bonate species (13):
200°C
> (

2 (LaOH)COs 225, (La0)2C0;

The CO3> groups in (La0),COs, although
apparently retaining their essential uni-
dentate character, are bridged between
(LaO),+ layers and would be expected to
be more stable and difficult to remove than
the corresponding species on an unmodified
LasQ; surface:

600-700°C

(La0),COs — Lay0; + CO,. (6)

The increasing spectral intensities observed
in Fig. 2 at 150 and 200°C may be due to
changes in extinetion coefficients of the
CO42 vibrational modes that accompany
reaction (5).
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